
Sentiment Knowledge Discovery in Twitter
Streaming Data

Albert Bifet and Eibe Frank

University of Waikato, Hamilton, New Zealand
{abifet,eibe}@cs.waikato.ac.nz

Abstract. Micro-blogs are a challenging new source of information for
data mining techniques. Twitter is a micro-blogging service built to dis-
cover what is happening at any moment in time, anywhere in the world.
Twitter messages are short, and generated constantly, and well suited
for knowledge discovery using data stream mining. We briefly discuss
the challenges that Twitter data streams pose, focusing on classification
problems, and then consider these streams for opinion mining and sen-
timent analysis. To deal with streaming unbalanced classes, we propose
a sliding window Kappa statistic for evaluation in time-changing data
streams. Using this statistic we perform a study on Twitter data using
learning algorithms for data streams.

1 Introduction

Twitter is a “what’s-happening-right-now” tool that enables interested parties
to follow individual users’ thoughts and commentary on events in their lives—
in almost real-time [26]. It is a potentially valuable source of data that can be
used to delve into the thoughts of millions of people as they are uttering them.
Twitter makes these utterances immediately available in a data stream, which
can be mined using appropriate stream mining techniques. In principle, this
could make it possible to infer people’s opinions, both at an individual level as
well as in aggregate, regarding potentially any subject or event [26].

At the official Twitter Chirp developer conference in April 2010 [28], the
company presented some statistics about its site and its users. In April 2010,
Twitter had 106 million registered users, and 180 million unique visitors every
month. The company revealed that 300,000 new users were signing up per day
and that it received 600 million queries daily via its search engine, and a total of
3 billion requests per day based on its API. Interestingly, 37 percent of Twitter’s
active users used their phone to send messages.

Twitter data follows the data stream model. In this model, data arrive at
high speed, and data mining algorithms must be able to predict in real time
and under strict constraints of space and time. Data streams present serious
challenges for algorithm design [3]. Algorithms must be able to operate with
limited resources, regarding both time and memory. Moreover, they must be
able to deal with data whose nature or distribution changes over time.

The main Twitter data stream that provides all messages from every user in
real-time is called Firehose [16] and was made available to developers in 2010.
To deal with this large amount of data, and to use it for sentiment analysis
and opinion mining—the task considered in this paper—streaming techniques
are needed. However, to the best of our knowledge, data stream algorithms,
in conjunction with appropriate evaluation techniques, have so far not been
considered for this task.

Evaluating data streams in real time is a challenging task. Most work in the
literature considers only how to build a picture of accuracy over time. Two main
approaches arise [2]:

– Holdout: Performance is measured using on single hold-out set.
– Interleaved Test-Then-Train or Prequential: Each individual example

is used to test the model before it is used for training, and accuracy is
incrementally updated.

A common problem is that for unbalanced data streams with, for example,
90% of the instances in one class, the simplest classifiers will have high accu-
racies of at least 90%. To deal with this type of data stream, we propose to
use the Kappa statistic, based on a sliding window, as a measure for classifier
performance in unbalanced class streams.

In Section 2 we discuss the challenges that Twitter streaming data poses and
discuss related work. Twitter sentiment analysis is discussed is Section 3, and
the new evaluation method for time-changing data streams based on the sliding
window Kappa statistic is proposed in Section 4. We review text data stream
learners in Section 5. Finally, in Section 6, we perform an experimental study
on Twitter streams using data stream mining methods.

2 Mining Twitter Data: Challenges and Related Work

Twitter has its own conventions that renders it distinct from other textual data.
Consider the following Twitter example message (“tweet”): RT @toni has a
cool #job. It shows that users may reply to other users by indicating user
names using the character @, as in, for example, @toni. Hashtags (#) are used
to denote subjects or categories, as in, for example #job. RT is used at the
beginning of the tweet to indicate that the message is a so-called “retweet”, a
repetition or reposting of a previous tweet.

In the knowledge discovery context, there are two fundamental data mining
tasks that can be considered in conjunction with Twitter data: (a) graph mining
based on analysis of the links amongst messages, and (b) text mining based on
analysis of the messages’ actual text.

Twitter graph mining has been used to tackle several interesting problems:

– Measuring user influence and dynamics of popularity. Direct links
indicate the flow of information, and thus a user’s influence on others. There
are three measures of influence: indegree, retweets and mentions. Cha et

al. [5] show that popular users who have high indegree are not necessarily
influential in terms of retweets or mentions, and that influence is gained
through concerted effort such as limiting tweets to a single topic.

– Community discovery and formation. Java et al. [15] found commu-
nities using HyperText Induced Topic Search (HITS) [17], and the Clique
Percolation Method [8]. Romero and Kleinberg [25] analyze the formation of
links in Twitter via the directed closure process.

– Social information diffusion. De Choudhury et al. [7] study how data
sampling strategies impact the discovery of information diffusion.

There are also a number of interesting tasks that have been tackled using
Twitter text mining: sentiment analysis, which is the application we consider
in this paper, classification of tweets into categories, clustering of tweets and
trending topic detection.

Considering sentiment analysis [18, 21], O’Connor et al. [19] found that sur-
veys of consumer confidence and political opinion correlate with sentiment word
frequencies in tweets, and propose text stream mining as a substitute for tra-
ditional polling. Jansen et al. [14] discuss the implications for organizations of
using micro-blogging as part of their marketing strategy. Pak et al. [20] used clas-
sification based on the multinomial näıve Bayes classifier for sentiment analysis.
Go et al. [12] compared multinomial näıve Bayes, a maximum entropy classifier,
and a linear support vector machine; they all exhibited broadly comparable ac-
curacy on their test data, but small differences could be observed depending on
the features used.

2.1 The Twitter Streaming API

The Twitter Application Programming Interface (API) [1] currently provides a
Streaming API and two discrete REST APIs. Through the Streaming API [16]
users can obtain real-time access to tweets in sampled and filtered form. The
API is HTTP based, and GET, POST, and DELETE requests can be used to
access the data.

In Twitter terminology, individual messages describe the “status” of a user.
Based on the Streaming API users can access subsets of public status descriptions
in almost real time, including replies and mentions created by public accounts.
Status descriptions created by protected accounts and all direct messages cannot
be accessed. An interesting property of the streaming API is that it can filter
status descriptions using quality metrics, which are influenced by frequent and
repetitious status updates, etc.

The API uses basic HTTP authentication and requires a valid Twitter ac-
count. Data can be retrieved as XML or the more succinct JSON format. The
format of the JSON data is very simple and it can be parsed very easily because
every line, terminated by a carriage return, contains one object.

3 Twitter Sentiment Analysis

Sentiment analysis can be cast as a classification problem where the task is to
classify messages into two categories depending on whether they convey positive
or negative feelings.

Twitter sentiment analysis is not an easy task because a tweet can contain a
significant amount of information in very compressed form, and simultaneously
carry positive and negative feelings. Consider the following example:

I currently use the Nikon D90 and love it, but not as much as
the Canon 40D/50D. I chose the D90 for the video feature. My
mistake.

Also, some tweets may contain sarcasm or irony [4] as in the following example:

After a whole 5 hours away from work, I get to go back again,
I’m so lucky!

To build classifiers for sentiment analysis, we need to collect training data so
that we can apply appropriate learning algorithms. Labeling tweets manually as
positive or negative is a laborious and expensive, if not impossible, task. However,
a significant advantage of Twitter data is that many tweets have author-provided
sentiment indicators: changing sentiment is implicit in the use of various types
of emoticons. Hence we may use these to label our training data.

Smileys or emoticons are visual cues that are associated with emotional
states [24, 4]. They are constructed by approximating a facial expression of emo-
tion based on the characters available on a standard keyboard. When the author
of a tweet uses an emoticon, they are annotating their own text with an emo-
tional state. Annotated tweets can be used to train a sentiment classifier.

4 Streaming Data Evaluation with Unbalanced Classes

In data stream mining, the most frequently used measure for evaluating pre-
dictive accuracy of a classifier is prequential accuracy [10]. We argue that this
measure is only appropriate when all classes are balanced, and have (approxi-
mately) the same number of examples. In this section, we propose the Kappa
statistic as a more sensitive measure for quantifying the predictive performance
of streaming classifiers. For example, considering the particular target domain
in this paper, the rate in which the Twitter Streaming API delivers positive
or negative tweets may vary over time; we cannot expect it to be 50% all the
time. Hence, a measure that automatically compensates for changes in the class
distribution should be preferable.

Just like accuracy, Kappa needs to be estimated using some sampling proce-
dure. Standard estimation procedures for small datasets, such as cross-validation,
do not apply. In the case of very large datasets or data streams, there are two ba-
sic evaluation procedures: holdout evaluation and prequential evaluation. Only
the latter provides a picture of performance over time. In prequential evaluation

Predicted Predicted
Class+ Class- Total

Correct Class+ 75 8 83
Correct Class- 7 10 17
Total 82 18 100

Table 1. Simple confusion matrix example

Predicted Predicted
Class+ Class- Total

Correct Class+ 68.06 14.94 83
Correct Class- 13.94 3.06 17
Total 82 18 100

Table 2. Confusion matrix for chance predictor based on example in Table 1

(also known as interleaved test-then-train evaluation), each example in a data
stream is used for testing before it is used for training.

We argue that prequential accuracy is not well-suited for data streams with
unbalanced data, and that a prequential estimate of Kappa should be used in-
stead. Let p0 be the classifier’s prequential accuracy, and pc the probability that
a chance classifier—one that assigns the same number of examples to each class
as the classifier under consideration—makes a correct prediction. Consider the
simple confusion matrix shown in Table 1. From this table, we see that Class+
is predicted correctly 75 out of 100 times, and Class- is predicted correctly 10
times. So accuracy p0 is 85%. However a classifier predicting solely by chance—
in the given proportions—will predict Class+ and Class- correctly in 68.06%
and 3.06% of cases respectively. Hence, it will have an accuracy pc of 71.12% as
shown in Table 2.

Comparing the classifier’s observed accuracy to that of a chance predictor
renders its performance far less impressive than it first seems. The problem is
that one class is much more frequent than the other in this example and plain
accuracy does not compensate for this. The Kappa statistic, which normalizes
a classifier’s accuracy by that of a chance predictor, is more appropriate in
scenarios such as this one.

The Kappa statistic κ was introduced by Cohen [6]. We argue that it is
particularly appropriate in data stream mining due to potential changes in the
class distribution. Consider a classifier h, a data set containing m examples and L
classes, and a contingency table where cell Cij contains the number of examples
for which h(x) = i and the class is j. If h(x) correctly predicts all the data,
then all non-zero counts will appear along the diagonal. If h misclassifies some
examples, then some off-diagonal elements will be non-zero.

We define

p0 =
�L

i=1 Cii

m

pc =
L�

i=1

L�

j=1

Cij

m
·

L�

j=1

Cji

m

In problems where one class is much more common than the others, any
classifier can easily yield a correct prediction by chance, and it will hence obtain
a high value for p0. To correct for this, the κ statistic is defined as follows:

κ =
p0 − pc

1− pc

If the classifier is always correct then κ = 1. If its predictions coincide with the
correct ones as often as those of the chance classifier, then κ = 0.

The question remains as to how exactly to compute the relevant counts for the
contingency table: using all examples seen so far is not useful in time-changing
data streams. Gama et al. [10] propose to use a forgetting mechanism for esti-
mating prequential accuracy: a sliding window of size w with the most recent
observations, or fading factors that weigh observations using a decay factor α.
As the output of the two mechanisms is very similar (every window of size w0

may be approximated by some decay factor α0), we propose to use the Kappa
statistic measured using a sliding window. Note that, to calculate the statistic
for an nc class problem, we need to maintain only 2nc + 1 estimators. We store
the sum of all rows and columns in the confusion matrix (2nc values) to com-
pute pc, and we store the prequential accuracy p0. The ability to calculate it
efficiently is an important reason why the Kappa statistic is more appropriate
for data streams than a measure such as the area under the ROC curve.

5 Data Stream Mining Methods

We experimented with three fast incremental methods that are well-suited to
deal with data streams: multinomial näıve Bayes, stochastic gradient descent,
and the Hoeffding tree.

Multinomial Näıve Bayes The multinomial näıve Bayes classifier is a popular
classifier for document classification that often yields good performance. It can
be trivially applied to data streams because it is straightforward to update the
counts required to estimate conditional probabilities..

Multinomial naive Bayes considers a document as a bag-of-words. For each
class c, P (w|c), the probability of observing word w given this class, is estimated
from the training data, simply by computing the relative frequency of each word
in the collection of training documents of that class. The classifier also requires
the prior probability P (c), which is straightforward to estimate.

Assuming nwd is the number of times word w occurs in document d, the
probability of class c given a test document is calculated as follows:

P (c|d) =
P (c)

�
w∈d P (w|c)nwd

P (d)
,

where P (d) is a normalization factor. To avoid the zero-frequency problem, it is
common to use the Laplace correction for all conditional probabilities involved,
which means all counts are initialized to value one instead of zero.

Stochastic Gradient Descent Stochastic gradient descent (SGD) has experi-
enced a revival since it has been discovered that it provides an efficient means to
learn some classifiers even if they are based on non-differentiable loss functions,
such as the hinge loss used in support vector machines. In our experiments we
use an implementation of vanilla stochastic gradient descent with a fixed learn-
ing rate, optimizing the hinge loss with an L2 penalty that is commonly applied
to learn support vector machines. With a linear machine, which is frequently
applied for document classification, the loss function we optimize is:

λ

2
||w||2 +

�
[1− (yxw + b)]+,

where w is the weight vector, b the bias, λ the regularization parameter, and the
class labels y are assumed to be in {+1,−1}.

We compared the performance of our vanilla implementation to that of the
Pegasos method [27], which does not require specification of an explicit learning
rate, but did not observe a gain in performance using the latter. On the contrary,
the ability to specify an explicit learning rate turned out to be crucial to deal
with time-changing Twitter data streams : setting the learning rate to a value
that was too small meant the classifier adapted too slowly to local changes in
the distribution. In our experiments, we used λ = 0.0001 and set the learning
rate for the per-example updates to the classifier’s parameters to 0.1.

Hoeffding Tree The most well-known tree decision tree learner for data streams
is the Hoeffding tree algorithm [9]. It employs a pre-pruning strategy based on
the Hoeffding bound to incrementally grow a decision tree. A node is expanded
by splitting as soon as there is sufficient statistical evidence, based on the data
seen so far, to support the split and this decision is based on the distribution-
independent Hoeffding bound.

Decision tree learners are not commonly applied to document classification
due to the high-dimensional feature vectors involved. Simple linear classifiers
generally yield higher accuracy. Nevertheless, we include Hoeffding trees in our
experiments on Twitter data streams to verify that this observation also holds
in this particular context. Moreover, decision trees can potentially yield valuable
insight into interactions between variables.

6 Experimental Evaluation

Massive Online Analysis (MOA) [2] is a system for online learning from exam-
ples, such as data streams. All algorithms evaluated in this paper were imple-
mented in the Java programming language by using WEKA [13] and the MOA
software.

In our experiments, we used the Twitter training datasets to extract features
using text filters in WEKA. Each tweet was represented as a set of words. We
extracted 10, 000 unigrams using the default stop word list in WEKA. We used
term presence instead of frequency, as Pang et al. [22] reported that term pres-
ence achieves better results than frequency on sentiment analysis classification.
The resulting vectors are stored in sparse format.

6.1 The twittersentiment.appspot.com and Edinburgh Corpora

Twitter Sentiment (twittersentiment.appspot.com) is a website that enables
visitors to research and track the sentiment for a brand, product, or topic. It
was created by Alec Go, Richa Bhayani, Karthik Raghunathan, and Lei Huang
from Stanford University. The website enables a visitor to track queries over
time. Sentiment classification is based on a linear model generated using the
maximum entropy method.1 The Twitter Sentiment website provides an API
to use the maximum entropy classifier: one can use it to determine the polarity
of arbitrary text, retrieve sentiment counts over time, and retrieve tweets along
with their classification.

The developers of the website collected two datasets: a training set and a
test one, which were also used for sentiment classification in [12]. The training
dataset was obtained by querying the (non-streaming) Twitter API for messages
between April 2009 and June 25, 2009 and contains the first 800, 000 tweets with
positive emoticons, and the first 800, 000 tweets with negative emoticons. The
list of positive emoticons used was: :), :-), :), :D, and =). The negative emoticons
used were: :(, :-(, and : (. The test dataset was manually annotated with class
labels and consists of 177 negative tweets and 182 positive ones. Test tweets
were collected by looking for messages that contained a sentiment, regardless
of the presence of emoticons. Each tweet contains the following information: its
polarity (indicating the sentiment), the date, the query used, the user, and the
actual text.

The Edinburgh corpus [23] was collected over a period of two months using
the Twitter streaming API. It contains 97 million tweets and requires 14 GB
of disk space when stored in uncompressed form.2 Each tweet has the following
information: the timestamp of the tweet, an anonymized user name, the tweet’s
text, and the posting method that was used.

The corpus was collected between November 11th 2009 and February 1st
2010, using Twitter’s streaming API. It is thus a representative sample of the
entire stream. The data contains over 2 billion words and there is no distinction
between English and non-English tweets. We only considered tweets in English
and only those that contained emoticons.

1 The software is available at http://nlp.stanford/software/classifier.shtml.
2 The corpus can be obtained at http://demeter.inf.ed.ac.uk/.

Accuracy Kappa Time
Multinomial Näıve Bayes 75.05% 50.10% 116.62 sec.
SGD 82.80% 62.60% 219.54 sec.
Hoeffding Tree 73.11% 46.23% 5525.51 sec.

Table 3. Total prequential accuracy and Kappa measured on the
twittersentiment.appspot.com data stream

Accuracy Kappa
Multinomial Näıve Bayes 82.45% 64.89%
SGD 78.55% 57.23%
Hoeffding Tree 69.36% 38.73%

Table 4. Accuracy and Kappa for the test dataset obtained from
twittersentiment.appspot.com

6.2 Results and Discussion

We performed two data stream experiments: one using the training dataset from
twittersentiment.appspot.com, and another one with the Edinburgh Corpus.
We also performed a classic train/test experiment based on each training set
and the test set from twittersentiment.appspot.com.

First, we consider the data from twittersentiment.appspot.com. We per-
formed a prequential evaluation, testing and then training, using the training
stream of 1, 600, 000 instances, half positives and half negatives. Figure 1 shows
the learning curve for this stream measuring prequential accuracy and Kappa
using a sliding window of size 1, 000. Table 3 reports the total prequential accu-
racy and Kappa. In this data stream the last 200, 000 instances are positive, as
the data was collected to have the same number of positive and negative tweets:
the rate of tweets using positive emoticons is usually higher than that of nega-
tive ones. We see at the end of the learning curve in Figure 1 that prequential
accuracy still presents (apparently) good results, but that the value of Kappa
is zero or below. This is an extreme example of a change in class distribution
(one class disappears completely from the stream), which shows very clearly why
Kappa is useful when the distribution of classes evolves over time. We see that
the worst method in accuracy, Kappa, and time for this dataset is the Hoeffding
Tree, supporting our hypothesis that tree learners are not appropriate in this
context.

The second experiment uses the data from twittersentiment.appspot.com
in a classic train/test set-up. Table 4 reports accuracy and Kappa for the test set.
The results for accuracy for näıve Bayes are comparable to those in [12]. As SGD
is very sensitive to change in the data distribution, we trained it on a randomized
version of the training dataset for this particular test. Doing this improves its
accuracy on the test set, but näıve Bayes is somewhat better. Note that the

Sliding Window Prequential Accuracy

30

40

50

60

70

80

90

100

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5
0,

57
0,

64
0,

71
0,

78
0,

85
0,

92
0,

99
1,

06
1,

13 1,
2

1,
27

1,
34

1,
41

1,
48

1,
55

Millions of Instances

A
c

c
u

ra
c

y
 %

NB Multinomial SGD Hoeffding Tree Class Distribution

Sliding Window Kappa Statistic

0

10

20

30

40

50

60

70

80

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43

0,
50

0,
57

0,
64

0,
71

0,
78

0,
85

0,
92

0,
99

1,
06

1,
13

1,
20

1,
27

1,
34

1,
41

1,
48

1,
55

Millions of Instances

K
a

p
p

a
 S

ta
ti

s
ti

c

NB Multinomial SGD Hoeffding Tree Class Distribution

Fig. 1. Sliding window prequential accuracy and Kappa measured on the
twittersentiment.appspot.com data stream. (Note: solid line shows accuracy in both
graphs.)

Accuracy Kappa Time
Multinomial Näıve Bayes 86.11% 36.15% 173.28, sec.
SGD 86.26% 31.88% 293.98 sec.
Hoeffding Tree 84.76% 20.40% 6151.51 sec.

Table 5. Total prequential accuracy and Kappa obtained on the Edinburgh corpus
data stream.

Hoeffding tree is the slowest of the three methods, as the current implementation
does not use sparse instances as multinomial näıve Bayes and SGD do.

The twittersentiment.appspot.com data does not constitute a represen-
tative sample of the real Twitter stream due to the fact that the data was
augmented to be balanced. Hence we now turn to the Edinburgh corpus. We
converted the raw data following the same methodology as Go et al. [11, 12]:

– Feature Reduction. Twitter users may use the @ symbol before a name to
direct the message to a certain recipient. We replaced words starting with
the @ symbol with the generic token USER, and any URLs by the token
URL. We also replaced repeated letters: e.g., huuuuuungry was converted to
huungry to distinguish it from hungry.

– Emoticons. Once they had been used to generate class labels, all emoticons
were deleted from the input text so that they could not be used as predictive
features.

Once this steps had been performed WEKA’s text filter was used to convert the
data into vector format.

The resulting data stream contains 324, 917 negative tweets and 1, 813, 705
positive ones. We observe that negative tweets constitute 15% of the labeled
data and positive ones 85%. It appears that people tend to use more positive
emoticons than negative ones.

Figure 2 shows the learning curve measuring prequential accuracy and Kappa
using a sliding window of 1, 000, and Table 5 reports the total prequential accu-
racy and value of Kappa. We see in the learning curve of Figure 2 that accuracy
is similar for the three methods, but this is not the case when one considers
the Kappa statistic. Again, Kappa provides us with a better picture of relative
predictive performance. In this stream, we see that multinomial näıve Bayes and
SGD perform comparably.

Finally, we test the classifiers learned with the Edinburgh corpus using the
test set from twittersentiment.appspot.com. Again, the training data was
randomized for SGD as in the case of the twittersentiment.appspot.com data.
Table 6 shows the results. The value of Kappa shows that multinomial näıve
Bayes is the most accurate method on this particular test set.

An advantage of the SGD-based model is that changes in its weights can be
inspected to gain insight into changing properties of the data stream. Table 7
shows the change in coefficients for some words along the stream obtained from
the Edinburgh corpus. The coefficients correspond to December 26th 2009, and

Sliding Window Prequential Accuracy

75

77

79

81

83

85

87

89

91

93

95

0,
01 0,

1
0,

19
0,

28
0,

37
0,

46
0,

55
0,

64
0,

73
0,

82
0,

91 1
1,

09
1,

18
1,

27
1,

36
1,

45
1,

54
1,

63
1,

72
1,

81 1,
9

1,
99

2,
08

Millions of Instances

A
c

c
u

ra
c

y
 %

NB Multinomial SGD Hoeffding Tree Class Distribution

Sliding Window Kappa Statistic

0

10

20

30

40

50

60

70

80

90

100

0
,0

1

0
,1

0
,1

9

0
,2

8

0
,3

7

0
,4

6

0
,5

5

0
,6

4

0
,7

3

0
,8

2

0
,9

1 1

1
,0

9

1
,1

8

1
,2

7

1
,3

6

1
,4

5

1
,5

4

1
,6

3

1
,7

2

1
,8

1

1
,9

1
,9

9

2
,0

8

Millions of Instances

K
a

p
p

a
 S

ta
ti

s
ti

c

NB Multinomial SGD Hoeffding Tree Class Distribution

Fig. 2. Sliding window prequential accuracy and Kappa measured on data stream
obtained from the Edinburgh corpus. (Note: solid line shows accuracy in both graphs.)

Accuracy Kappa
Multinomial Näıve Bayes 73.81% 47.28%
SGD 67.41% 34.23%
Hoeffding Tree 60.72% 20.59%

Table 6. Accuracy and Kappa for the test dataset obtained from
twittersentiment.appspot.com using the Edinburgh corpus as training data
stream.

Middle of Stream End of Stream
Tags Coefficient Coefficient Variation
apple 0.3 0.7 0.4
microsoft -0.4 -0.1 0.3
facebook -0.3 0.4 0.7
mcdonalds 0.5 0.1 -0.4
google 0.3 0.6 0.3
disney 0.0 0.0 0.0
bmw 0.0 -0.2 -0.2
pepsi 0.1 -0.6 -0.7
dell 0.2 0.0 -0.2
gucci -0.4 0.6 1.0
amazon -0.1 -0.4 -0.3

Table 7. SGD coefficient variations on the Edinburgh corpus

February 1st 2010, respectively. Monitoring these coefficients, which determine
how strongly absence/presence of the corresponding word influences the model’s
prediction of negative or positive sentiment, may be an efficient way to detect
changes in the population’s opinion regarding a particular topic or brand.

7 Conclusions

Twitter streaming data can potentially enable any user to discover what is hap-
pening in the world at any given moment in time. Because the Twitter Streaming
API delivers a large quantity of tweets in real time, data stream mining and eval-
uation techniques are the best fit for the task at hand, but have not been consid-
ered previously. We discussed the challenges that Twitter streaming data poses,
focusing on sentiment analysis, and proposed the sliding window Kappa statistic
as an evaluation metric for data streams. Considering all tests performed and
ease of interpretability, the SGD-based model, used with an appropriate learning
rate, can be recommended for this data.

In future work, we would like to extend the results presented here by eval-
uating our methods in real time and using other features available in Twitter
data streams, such as geographical place, the number of followers or the number
of friends.

Acknowledgments

We would like to thank Alec Go, Lei Huang, and Richa Bhayani for very gen-
erously sharing their Twitter dataset with us. We would also like to thank Sasa
Petrovic, Miles Osborne, and Victor Lavrenko for making their Twitter dataset
publicly available.

References

1. Twitter API. http://apiwiki.twitter.com/, 2010.
2. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis

http://moa.cs.waikato.ac.nz/. Journal of Machine Learning Research (JMLR),
2010.

3. A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree
learning from evolving data streams. In Proceedings of the 14th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages 299–310, 2010.

4. P. Carvalho, L. Sarmento, M. J. Silva, and E. de Oliveira. Clues for detecting
irony in user-generated contents: oh...!! it’s ”so easy” ;-). In Proceeding of the 1st
International CIKM Workshop on Topic-sentiment Analysis for Mass Opinion,
pages 53–56, 2009.

5. M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring User Influ-
ence in Twitter: The Million Follower Fallacy. In Proceedings of the 4th Interna-
tional AAAI Conference on Weblogs and Social Media, pages 10–17, 2010.

6. J. Cohen. A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20(1):37–46, April 1960.

7. M. De Choudhury, Y.-R. Lin, H. Sundaram, K. S. Candan, L. Xie, and A. Kelliher.
How does the data sampling strategy impact the discovery of information diffusion
in social media? In Proceedings of the 4th International AAAI Conference on
Weblogs and Social Media, pages 34–41, 2010.

8. I. Derenyi, G. Palla, and T. Vicsek. Clique percolation in random networks. Phys-
ical Review Letters, 94(16), 2005.

9. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 71–80, 2000.

10. J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning
algorithms. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 329–338, 2009.

11. A. Go, R. Bhayani, K. Raghunathan, and L. Huangi. http://twittersentiment.
appspot.com/, 2009.

12. A. Go, L. Huang, and R. Bhayani. Twitter sentiment classification using distant
supervision. In CS224N Project Report, Stanford, 2009.

13. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18,
2009.

14. B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Micro-blogging as online word
of mouth branding. In Proceedings of the 27th International Conference Extended
Abstracts on Human Factors in Computing Systems, pages 3859–3864, 2009.

15. A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding mi-
croblogging usage and communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pages
56–65, 2007.

16. J. Kalucki. Twitter streaming API. http://apiwiki.twitter.com/Streaming-API-
Documentation, 2010.

17. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

18. B. Liu. Web data mining; Exploring hyperlinks, contents, and usage data. Springer,
2006.

19. B. O’Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith. From tweets
to polls: Linking text sentiment to public opinion time series. In Proceedings of
the International AAAI Conference on Weblogs and Social Media, pages 122–129,
2010.

20. A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opin-
ion mining. In Proceedings of the Seventh Conference on International Language
Resources and Evaluation, pages 1320–1326, 2010.

21. B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135, 2008.

22. B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment classification
using machine learning techniques. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 79–86, 2002.

23. S. Petrovic, M. Osborne, and V. Lavrenko. The Edinburgh Twitter corpus. In
#SocialMedia Workshop: Computational Linguistics in a World of Social Media,
pages 25–26, 2010.

24. J. Read. Using emoticons to reduce dependency in machine learning techniques for
sentiment classification. In Proceedings of the ACL Student Research Workshop,
pages 43–48, 2005.

25. D. M. Romero and J. Kleinberg. The directed closure process in hybrid social-
information networks, with an analysis of link formation on Twitter. In Proceedings
of the 4th International AAAI Conference on Weblogs and Social Media, pages
138–145, 2010.

26. E. Schonfeld. Mining the thought stream. TechCrunch Weblog Article,
http://techcrunch.com/2009/02/15/mining-the-thought-stream/, 2009.

27. S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. In Proceedings of the 24th International Conference on
Machine learning, pages 807–814, 2007.

28. J. Yarow. Twitter finally reveals all its secret stats. BusinessInsider Weblog Article,
http://www.businessinsider.com/twitter-stats-2010-4/, 2010.

